Penney Ante Game

by Jason Godfrey, Dylan Page & Daniela Ratkovic

University of Wollongong, Australia.

August 31, 2015

VISIONARY / PASSIONATE / DYNAMIC CONNECT: UOW

How many ways can you flip 3 coins?

How many ways can you flip 3 coins?

How many ways can you flip 3 coins?

The Penney Ante Game

The Game:

- Penney Ante is a game played between two players, A and B.
- Player A chooses a sequence of three consecutive coin flips.
- After Player A has chosen, only then does Player B choose a sequence of three coin flips.
- The player whose sequence occurs first wins.

The Penney Ante Game

The Game:

- Penney Ante is a game played between two players, A and B.
- Player A chooses a sequence of three consecutive coin flips.
- After Player A has chosen, only then does Player B choose a sequence of three coin flips.
- The player whose sequence occurs first wins.

Instructions:

- One player should be in charge of flipping the coin.
- The other player records the sequence on the game sheet.
- \blacksquare Play 5 rounds and then switch the role of Player A and Player B.

Who won more often?

Who won more often?

Player B is able to win more often, since they have the opportunity to counter-pick a sequence in response to what Player A chooses.

The best way to increase your chances of winning as Player B is to change the second pick of Player A and move it to the front of their sequence.

Who won more often?

Player B is able to win more often, since they have the opportunity to counter-pick a sequence in response to what Player A chooses.

The best way to increase your chances of winning as Player B is to change the second pick of Player A and move it to the front of their sequence.

If Player A picks: [1] [2] [3] Player B's picks: [not-2] [1] [2]

For example, if Player A picks HHH, then Player B should pick THH.

НТНТНТТН...<u>ННН</u> НТНТНТТН...**Т<u>ННН</u>**

A's Choice	B's Choice	Probability of B Winning	Odds in Favour of B
ННН			
HHT			
HTH			
HTT			
THH			
THT			
TTH			
TTT			

A's Choice	B's Choice	Probability of B Winning	Odds in Favour of B
ННН	ТНН		
ННТ	тнн		
НТН	ННТ		
HTT	ННТ		
THH	ТТН		
THT	ТТН		
TTH	НТТ		
TTT	НТТ		

A's Choice	B's Choice	Probability of B Winning	Odds in Favour of B
ННН	тнн	$\frac{7}{8}$	
ННТ	ТНН	$\frac{3}{4}$	
HTH	ННТ	$\frac{2}{3}$	
HTT	HHT	$\frac{2}{3}$	
THH	ТТН	$\frac{2}{3}$	
THT	ТТН	$\frac{2}{3}$	
TTH	HTT	$\frac{3}{4}$	
TTT	HTT	$\frac{7}{8}$	

A's Choice	B's Choice	Probability of B Winning	Odds in Favour of B
ННН	тнн	$\frac{7}{8}$	7:1
ННТ	тнн	$\frac{3}{4}$	3:1
HTH	ННТ	$\frac{2}{3}$	2:1
HTT	ННТ	$\frac{2}{3}$	2:1
ТНН	ТТН	$\frac{2}{3}$	2:1
THT	ТТН	$\frac{2}{3}$	2:1
ТТН	HTT	$\frac{3}{4}$	3:1
TTT	HTT	$\frac{7}{8}$	7:1

How do you calculate those odds?

We use binary!

How do you calculate those odds?

We use binary!

When we count normally, each place value represents lots of powers of 10. eg.

 $321 = 3 \times 10^2 + 2 \times 10^1 + 1 \times 10^0$

How do you calculate those odds?

We use binary!

When we count normally, each place value represents lots of powers of $10. \ {\rm eg.}$

$$321 = 3 \times 10^2 + 2 \times 10^1 + 1 \times 10^0$$

Binary counts in base 2 which uses lots of powers of $2. \ensuremath{\mathsf{eg}}$ eg.

$$101_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 5$$

Conway's Algorithm

This uses comparisons between Player A and Player B's sequences and assigns binary values.

Conway's Algorithm

This uses comparisons between Player A and Player B's sequences and assigns binary values.

How to perform it:

- Place the sequences one above the other with aligned digits.
- Compare the whole of the two sequences.
- If they are the same, put 1 above the first term, if not put a 0.
- Remove the leading term from the upper sequence and shift to the left.
- Compare the first two digits.
- If they are the same, put 1 above the leading element, otherwise a 0.
- Repeat the shift and check for the last element.
- Compile the results as a 3 digit binary number.

Conway's Algorithm (cont'd)

Using the above steps, compare AA, AB, BB & BA. After converting the binary values, substitute into the following expression:

 $\frac{AA - AB}{BB - BA}$

Conway's Algorithm (cont'd)

Using the above steps, compare AA, AB, BB & BA. After converting the binary values, substitute into the following expression:

$$\frac{AA - AB}{BB - BA}$$

eg. when A is given by HHH and B is given by THH:

AA	=	111_{2}
AB	=	000_{2}
BB	=	100_{2}
BA	=	011_{2}

Converting and substituting into the above gives:

$$\frac{7-0}{4-3} = 7$$

 \therefore Player B's odds are 7, which as a ratio is 7:1.

