Penney Ante Game

by Jason Godfrey, Dylan Page \& Daniela Ratkovic
University of Wollongong, Australia.

August 31, 2015

How many ways can you flip 3 coins?

How many ways can you flip 3 coins?

How many ways can you flip 3 coins?

The Penney Ante Game

The Game:

- Penney Ante is a game played between two players, A and B.
- Player A chooses a sequence of three consecutive coin flips.
- After Player A has chosen, only then does Player B choose a sequence of three coin flips.
- The player whose sequence occurs first wins.

The Penney Ante Game

The Game:

■ Penney Ante is a game played between two players, A and B.

- Player A chooses a sequence of three consecutive coin flips.
- After Player A has chosen, only then does Player B choose a sequence of three coin flips.
■ The player whose sequence occurs first wins.

Instructions:

■ One player should be in charge of flipping the coin.
■ The other player records the sequence on the game sheet.
■ Play 5 rounds and then switch the role of Player A and Player B.

Game	Player Selection	Sequence	Winner
1.	Player A:H H H H	H	
	Player B: $T H$	H	H

Who won more often?

Who won more often?

Player B is able to win more often, since they have the opportunity to counter-pick a sequence in response to what Player A chooses.

The best way to increase your chances of winning as Player B is to change the second pick of Player A and move it to the front of their sequence.

Who won more often？

Player B is able to win more often，since they have the opportunity to counter－pick a sequence in response to what Player A chooses．

The best way to increase your chances of winning as Player B is to change the second pick of Player A and move it to the front of their sequence．

If Player A picks：［1］［2］［3］
Player B＇s picks：［not－2］［1］［2］

For example，if Player A picks HHH，then Player B should pick THH．

$$
\begin{aligned}
& \text { HTHTHTTH... HHH } \\
& \text { HTHTHTTH... THHH }
\end{aligned}
$$

What are the chances?

A's Choice	B's Choice	Probability of B Winning	Odds in Favour of B
HHH			
HHT			
HTH			
HTT			
THH			
THT			
TTH			
TTT			

What are the chances?

A's Choice	B's Choice	Probability of B Winning	Odds in Favour of B
HHH	THH		
HHT	THH		
HTH	HHT		
HTT	HHT		
THH	TTH		
THT	TTH		
TTH	HTT		
TTT	HTT		

What are the chances?

A's Choice	B's Choice	Probability of B Winning	Odds in Favour of B
HHH	THH	$\frac{7}{8}$	
HHT	THH	$\frac{3}{4}$	
HTH	HHT	$\frac{2}{3}$	
HTT	HHT	$\frac{2}{3}$	
THH	TTH	$\frac{2}{3}$	
THT	TTH	$\frac{2}{3}$	
TTH	HTT	$\frac{3}{4}$	
TTT	HTT	$\frac{7}{8}$	

What are the chances?

A's Choice	B's Choice	Probability of B Winning	Odds in Favour of B
HHH	THH	$\frac{7}{8}$	$7: 1$
HHT	THH	$\frac{3}{4}$	$3: 1$
HTH	HHT	$\frac{2}{3}$	$2: 1$
HTT	HHT	$\frac{2}{3}$	$2: 1$
THH	TTH	$\frac{2}{3}$	$2: 1$
THT	TTH	$\frac{2}{3}$	$2: 1$
TTH	HTT	$\frac{3}{4}$	$3: 1$
TTT	HTT	$\frac{7}{8}$	$7: 1$

How do you calculate those odds?

We use binary!

How do you calculate those odds?

We use binary!
When we count normally, each place value represents lots of powers of 10 . eg.

$$
321=3 \times 10^{2}+2 \times 10^{1}+1 \times 10^{0}
$$

How do you calculate those odds?

We use binary!
When we count normally, each place value represents lots of powers of 10 . eg.

$$
321=3 \times 10^{2}+2 \times 10^{1}+1 \times 10^{0}
$$

Binary counts in base 2 which uses lots of powers of 2 . eg.

$$
\begin{aligned}
101_{2} & =1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
& =5
\end{aligned}
$$

Conway's Algorithm

This uses comparisons between Player A and Player B's sequences and assigns binary values.

Conway’s Algorithm

This uses comparisons between Player A and Player B's sequences and assigns binary values.

How to perform it:

- Place the sequences one above the other with aligned digits.
- Compare the whole of the two sequences.

■ If they are the same, put 1 above the first term, if not put a 0 .
■ Remove the leading term from the upper sequence and shift to the left.

- Compare the first two digits.

■ If they are the same, put 1 above the leading element, otherwise a 0.

- Repeat the shift and check for the last element.

■ Compile the results as a 3 digit binary number.

Conway's Algorithm (cont'd)

Using the above steps, compare $A A, A B, B B \& B A$. After converting the binary values, substitute into the following expression:

$$
\frac{A A-A B}{B B-B A}
$$

Conway's Algorithm (cont'd)

Using the above steps, compare $A A, A B, B B \& B A$. After converting the binary values, substitute into the following expression:

$$
\frac{A A-A B}{B B-B A}
$$

eg. when A is given by HHH and B is given by THH :

$$
\begin{aligned}
A A & =111_{2} \\
A B & =000_{2} \\
B B & =100_{2} \\
B A & =011_{2}
\end{aligned}
$$

Converting and substituting into the above gives:

$$
\frac{7-0}{4-3}=7
$$

\therefore Player B's odds are 7 , which as a ratio is $7: 1$.

